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1. INTRODUCTION

A very elegant, now classical, theory exists for the problem of best
approximation in the space of real valued, continuous functions CR[a, b] by
elements of an n-dimensional Haar subspace [3]. This theory includes the
alternation theorem, the strong unicity theorem, the Freud theorem, and
others. Several effective algorithms for computing best approximations in
CR[a, b] are available; for example, the second algorithm of Remes.

Unfortunately, most of this elegant theory does not extend even to the
best approximation problem in CR(D), where D is a rectangle in R 2 •

A number of papers have considered settings that do emit best approxi­
mation results paralleling those obtainable in the space CR[a, b], see, for
example [1, 10, 11, 12, 13] and the references of [11].

The focus of the present paper is the multivariate product approximation
scheme introduced by Weinstein [12, 13] and subsequently considered in the
linear case in [7,8]. For nonlinear product approximation methods, see
[2, 6, 7] and the references contained in [7]. The best product approximation
setting has yielded several theorems in multivariate approximation that are
not possible for classical multivariate best approximations (see [8, 12, 13]
and, in particular, Theorem 4 in [8]). Furthermore, algorithms for computing
best product approximations have proved to be very efficient when compared
to know algorithms for computing classical multivariate best approximations
in CR(D), [6, 7, 12].

The papers [2, 6, 7, 8, 12] have considered uniform product approximation
either on rectangles or appropriate discrete sets contained in R 2 • Weinstein
[13] has considered a type of LP product approximation, I ~ p ~ ro, on
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more complicated domains in R2 • The admissibility of acceptable domains
is based on rather technical conditions.

In the present paper the authors view product approximation in a Banach
space defined by a continuous field of Banach spaces; this abstract setting
reveals basic product approximation features on more complicated domains.

Although the emphasis of the present paper is on product approximation
in a Banach space defined by a continuous field of Banach spaces, other
examples of the theory developed will be given.

2. ApPROXIMATION IN A BANACH SPACE DEFINED BY A CONTINUOUS FIELD

OF BANACH SPACES

This section contains most of the fundamental theorems of this paper.
Necessary definitions and terminology precede these theorems.

Let T be a topological space. The first definition is given in [5].

DEFINITION 1. A continuous field tff of Banach spaces on T is a family
(Z(t»tET of complex Banach spaces, together with a subset r of the cartesian
product TItET Z(t), such that

(a) r is a complex linear space of TItET Z(t);

(b) for all t E T, the set {z(t): z E r} is dense in Z(t);

(c) for all z E r, the function t -+ II z(t)i~t is continuous (II ilt is the norm
on Z(t»;

(d) let z E: TItET·Z(t); if for all t E T and all E > 0, there is a VE r such
that Ii z(s) - v(s)!is ,;( E for every s in some neighborhood of t, then z E r.

Hereafter the continuous field of Banach spaces <ff is denoted by {f ==

«Z(t)tET, r).
Now let Z be the set of all z E r such that il z(t)ll t vanishes at infinity.

Clearly Z is a linear subspace of r. For Z E Z, define

III z III", = sup(l! z(t)llt: t E T}.

The map z -+ Iii z iii", defines a norm for Z, and the pair

(2.1)

is called the Banach space defined by the continuous field of Banach spaces 0",

The Banach space Zoc will generally provide the setting for subsequent
discussions.

Throughout the remainder of the paper T is assumed to be a compact
Hausdorff space, and fL is a finite, positive, regular Borel measure defined
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on T with support T. We note when T is a compact Hausdorff space that
T=Z.

Let 1 ~ p < + 00, and let Z E Z. Corresponding to (2.1), define

(f
lip

III Z Iliv = T II z(t)ll~ dJL) . (2.2)

Then Zp denotes the normed linear space (Z, III . Ilip).
For additional information about continuous fields of Banach spaces the

interested reader is referred to [5, pp. 186-222].
Now let A be a Banach algebra with norm II . IIA .

DEFINITION 2. A Banach space Y is said to be a Banach A-module if Y
is a module (left or right) in the usual algebraic sense and if for alIa E A
and)' E Y, II ay Ily ~ k Ii a IIA II y fly where k is a fixed, positive number.

By virtue of [5, 10.1.9], Zoo is a Banach C(T)-module, where C(T) denotes
the complex valued continuous functions defined on T. The reader is referred
to [9] for additional properties of Banach modules.

DEFINITION 3. A sub-A-module V C Y is said to be free, with generator
GCV, if

(a) spanA G = V; and if

(b) VI, , Vn in G and al ,... , an in A are such that L;~l aivi = 0, then
ai = 0, i = 1, ,n. If in addition to (a) and (b), G is a finite set and V is closed,
then V is' said to be a finitely generated free and complete A-module, and
the elements of G are called free generators of V.

DEFINITION 4. Let Z E Z. The elements VI' V2 , ... , Vn in Z are said to form
a C(T)-module Chebyshev system for z if for each t E T, dim span(vl(t),
v2(t), ... , vn(t» = nand z(t) has a unique best approximation from
span(v1(t), ... , vn(t».

We note from Definition 4 that if for each Z E Z, z(t) has a unique best
approximation from span(vl(t), ... , vn(t», then span(v1(t), ... , v,,(t» would
form a Chebyshev subspace in the usual sense in Z(t) [11, p. 103].

The following lemma will be utilized in the proof of Theorem I.

LEMMA. Let z E Zoo and suppose VI"'" V n are elements of Zoo that form a
C(T)-module Chebyshev system for z. Letf: T -+ R be thefunction defined by

jet) = inf (II i~ (XiV..(t) t (Xi are complex scalars'i~ i (Xi i = 1)
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and set f3 = iuf{f(t): tEn· Then (a) f3 > 0; (b) if a1 , •.. , an belong to C(T),
then Ii! 2:;=1 aivi ill", ~ (f3ln) 2:~=1 I! ai II", ; (c) the space spanC(T)(vl , V2,... , vn>
is afree and complete sub-C(T)-module ofZ", withfree generators VI' V2 , .. " 'In'

Proof Suppose f3 = O. Then there is a net {t qeA} in Tsuch thatf(tq) -+0.
Consequently, for each q E A there are scalars (}.q,l' Ciq ,2 , ... , C'l.q,n such that
L;~1 j <Xq.i I = 1 and such that

(2.3)

Since T is compact and {CXq,i}qell is a bounded set we can assume, by dropping
to a subset if necessary, that tq ----+ t ET and CXq,i ----+ CXi , where 2:;=1 I rx.; I = l­

It follows that

II '" II' II n II II n " III I CXiVi(t) 1-::( II.I <XiVi(l) \1- -II ~ CX;Vi(tq) 11<
z=1 t I 3=1 t z=l ~q .

n II "'I
+ L i <Xi - CXq,i I !I vltq)lltq + :1 L CXq,iVi(tq) II

i=l " i=l iQ.

Now part (c) of Definition land (2.3) imply that

il ±CXiVi(t) 11_ = o.
~=1 r

(2.4)

But since VI, , vn form a C(T)-module Chebyshev system for z,
dim span<v1(t), , vn(t) = n; consequently (2.4) implies that !Xi = 0,
i = 1, ... , n. But this contradicts 2:;=11 <Xi I = 1, and hence (a) is established.

Now let t E T and let a1 , a2 ,... , an belong to C(T). Clearly part (a) of the
Lemma implies that

f3 I ai(t)1 ~ Ii t aiel) Viet) II ~ III ±aiVi III .
1.=1 t 2.=1 00

Thus {3ll ai !I", ~ III 2:;~1 aiv, III", , and this inequality implies (b).

(2.5)
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To establish part (c) we need to show that spanC(T)<vI , ... , vn) is complete.
Suppose {g;};l (spanC(T)(vl ,..., vn) is a Cauchy sequence. Now

n

;?: (13/n) I II a;; - aik 1100
i~l

by part (b) of the Lemma. Thus {ai;}:1 is Cauchy in C(T). Part (c) now follows
from the completeness of C(T) and Zoo. I

THEOREM 1. Let Z E Zoo and suppose that VI' V2 , ••• , V.;. are elements in Za;
thatform a C(T)-module Chebyshev systemfor z. For each t E T let al(t), ... , an(t)
be the unique complex numbers satisfying

II z(t) - .f ai(t) Viet) II
.=1 t

= inf{11 z(t) - q(t)llt: q(t) E span(vl(t),..., vn(t»}. (2.6)

Then each ai , i = 1,..., n is an element of C(T).

Proof Letf(t) and 13 be defined as in the Lemma. Then (2.5) implies that

f I ai(t)I < (n/13) II.f ai(t) Viet) II
·,=1 '~l t

< (n/13) ii .f ai(t) vtCt) - z(t) II + (11/13) II z(t)llt
1-1 t

< (211/(3) II z(t)llt .

Thus

II ai 1100 < (2n/(3) III z 11100 , i = 1,2,... , n. (2.7)

As usual tIn denotes the Banach space of n-tuples ex = (exl ,... , exn) of
complex numbers with norm II ex 1/ = L~=1 I ex; I. Let G: T X tIn -+ R be the
mapping defined by

G(t, ex) = II z(t) - I exiV;(t) II
/I i=l lit

(2.8)
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for each t E T and ex E tIn. Let (s, 'T) be a fixed point in T X tIn. Then

: G(t, c<) - G{s, 'T)I ~ I G(t, a:) - G(t, 'T)I + 1G(t, 7) - G(s, T)!

n

~ I I <Xi - 'T; i II v;(t)ll t
;~1
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This inequality and part (c) of Definition 1 now imply that G is a continuous
map. Next define p: T -+ R by the formula

pet) = II z(t) - ±ai(t) ViCt) II = G(t, aCt»~,
t=1 i

where a: T -+ t/' is given by aCt) = (aICt), ait), ... , an(t». Observe that

pet) - pes) ~ G(t, a(s» - G(s, a(s»

and that

pes) - pet) ~ G(s, aCt»~ - G(t, aCt»~.

(2.9)

(2.10)

The continuity of G and (2.7) imply that I G(s, aCt»~ - G(t, aCt»~! -+ 0 as
t -+ s. Consequently (2.9) and (2.10) imply that p is continuous. Now let
E > 0 and SET be given. The argument given in [12, Theorem 2.2] implies
that there is a 8 > 0 such that if 'T = (r1 , ... , 'Tn) E /1n has the property that
G(s, r) ~ pes) + 0, then L.~=l I 'Ti - a;(s)I < E. Choose a neighborhood U
ofs such that for each t E U, Ipet) - p(s)/ < 8/2 and i G(s, aCt»~ - G(t, a(t)1 <
8/2. It follows for t E U that

G(s, aCt»~ ~ 1 G(s, aCt»~ - G(t, a(t»1 + I pet) - pes); + pes)

~ pes) + 8.

Thus L;~ll ai(t) - a;(s)j < E, and consequently Gi E C(T), i = 1,2,..., n. •

The next theorem establishes a fundamental link between the normed
linear spaces Zp, 1 ~ p ~ CfJ, and approximation from the span of a C(T)­
module Chebyshev system.

THEOREM 2. Let z be a fixed element of Zoo, and suppose that VI , ... , V"

are elements in Zoc, that form a C(T)-module Chebyshev system for z. Let
V = spanC(T)<vI , ... , vn), and let

1 ~p ~ co.
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Then 2"v1(z) contains exactly one element vo ; moreover, Vo E 2"vP(z) for
I ~p ~ 00.

Proof Part (c) of the Lemma implies that V is a free and complete sub­
C(T)-module of Zoo with free generators VI"'., Vn . Now let a1 , ••• , an be the
elements of C(T) defined in (2.6). Let Vo = I;=1 atVi . Then clearly VoE2"vP(z),
I ~ P ~ 00. Next suppose that q = I;=1 bivt is in 2"v1(z), and assume for
some t E T that q(t) =1= vet)· Since II z(t) - vo(i)lli < II z(t) - q(t)lli , there is a
neighborhood U of t and a 8 > 0 such that

II z(t) - vo(t)llt + 0 < /I z(t) - q(t)lIt

for all t E U. It follows that

(2.11)

III z - Vo1111 = til z(t) - vo(t)llt dl-'(t)

= f II z(t) - vo(t)llt dl-'(t) + f II z(t) - vo(t)/lt dl-'(t).
u rlu

This equality and (2.11) imply that

/II z - Vo1111 ~ -01-'(U) + f
u

II z(t) - q(t)llt dl-'(t)

+ J' /I z(t) - q(t)/lt dl-'(t)
rlu

~ -0l-'(U) + /II z - q 1111

= -0l-'(U) + /II z - Vo /Ill .

Therefore 1-'(U) = 0, which contradicts the fact that the support of I-' is T. I

Before proceeding to the next theorem we give two examples of C(T)­
module Chebyshev systems in Banach spaces defined by continuous fields of
Banach spaces. The first of these examples will be utilized in subsequent
product approximation considerations.

EXAMPLE 1. Suppose that J is a compact subset of the real numbers and
that span<J;' ,fz ,..·,In.> ~ C(J) is a Chebyshev subspace of dimension m.
Let I = {I, 2, ... , n} and set At = C(J) for each i E 1. Define f j E n;=1 Ai by
fiO = fj, j = 1,2,... , m. We now show that f l , ... , fm form a C(I)-module
Chebyshev system for each b contained in the Banach space Aoo defined by the
continuous field of Banach spaces ((At)i"!' n;~lAi)' In terms of previous
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notation we observe that r = z = n:=l Ai, T = I, and that Ax = Zer..
Also

Ii 1t(i)I[; = sup I h(i)(y)[ = :i flU)ilJ
YEJ

and

Iii h 11!00 = max 11 h(i)l!J.
l~i~n

Clearly dim span(fl(i), , fm(i» = dim span(fl ,... ,fn;> = in, i = 1,... ,11. Let
hE Aoo • Since span(!J. , ,fm> is a Chebyshev subspace in C(l), each h(i) has
a unique best approximation from this span. Thus Definition 4 implies that
f l ,... , fill is a C(l)-module Chebyshev system for h. Let cIU), ... , cmU) be the
coefficients determined in (2.6). Then

II" hU) - f ciO flO I'!" = sup Ih(i)(y) - f Cj(i)jj(y) I.
I j=l 11. YEJ . j=l I

Therefore f(i)(y) = L~:l Cj(i)jj(y) is the classical unique best approximation
to h(i)(y) on the set 1 from span(fl ,...,j,,,), i = 1,2, ... , II.

EXAMPLE 2. Suppose «Z(t»tET , T) is a continuous field of Hilbert spaces;
that is, each Z(t) is a Hilbert space. Assume VI , V2 , ... , v" are elements in Zo,
such that for each t E T, {vl(t), ... , vn(t)} is an onhonormal set in Z(r). Then
VI' V2 , ... , Vn form a C(T)-module Chebyshev system for any fEZ",. The
reader is referred to [4] for non-trivial examples of continuous fields of Hilbert
spaces.

In the next theorem the basic results needed to extend product approxi··
mation to more general domains are established.

THEOREM 3. Let S be a compact Hausdorff space, Q a continuous mapping
of S onto T, and Y a Banach space. Let e be the subset of DIET C(St , Y),
St = Q-l(t), given by e = {f: f E C(S, Y)}, where f is defined by f(n = f I s..
Then

(2.12)

is a continuous field ofBanach spaces ifand only ifQ is an open map. 11;[oreover,
when Q is an open map, the Banach space Ace defined by (2.12) is isometrically
isomorphic to C(S, Y).

Proof First assume that Q is an open map. Then the properties of
Definition 1 need to be verified.

It is clear that e is a complex linear subspace of ntET qSt, Y), and, by
virtue of [5,10.1.12, p. 190], C(St, Y) = {f(t): fE e} for each t E T. Thus
properties (a) and (b) of Definition 1 are verified.
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Now let f E f), where f E C(S, Y), and suppose {t"}{)EA is a net in T that
converges to t. Assume

lim II f(tJllt > II f(t)llt .
() ()

(2.13)

(Here II f(t)jlt = SUPSES II f(s)/lv .) Suppose that {tn} is a subnet satisfying
t

lim II f(tn)llt = lim [I f(t{)llt ..
n n.:w. oX

(2.14)

We may assume there is a net {sn} h S, Sn ESt ,that converges to some s E S
and that satisfies "

Clearly lim.. II f(sn)llv = limn II £(tn)llt . Since Q is continuous and Q-l(tn) =
St , tn -- t implies that Q(s) = t. Thus (2.13) and (2.14) imply that

"

II £(t)llt < lim II £(tn)llt = lim II f(sn)/ly
n n 11

== II f(s)lly = II f(t)(s)lly

~ sup II f(t)(s)lly = II f(t)/lt ,
SESt

which is a contradiction. Therefore

fiiii II f(t{)llt ~ II f(t)llt .
<X {)

Now select sE Q-l(t) so that

II f(t)llt == sup II f(t)(s)ljy = II f(t)(s)lly = II f(s)lly .
SES t

Let € > 0 be given. By continuity of f, the set

U = {s E S: II f(s)lly - € < II f(s)lly < II f(s)lly - €}

(2.15)

is an open neighborhood of S. Since Q is an open map and Q(s) = t, it
follows that Q(U) is an open neighborhood of t. Thus there is an no from the
directed set A such that tn E Q(U) for 11 :> 110 , Choose Sn in U (\ Q-l(tn).
Note for n :> no that

II f(tn)llt = sup II f(tn)(s)IIY ? II f(tn)(sn)lly
n SESt

n

= II f(sn)lIy > II f(s)lly - E.
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Thus

lim II f(tn)llt n ;;:: 'II f(S)lly = II f(t)(s)llv = \1 f(t)III .
n

This inequality and (2.15) now imply that

liT-II {(t~)lit" = Ii {(t)lit .

85

Therefore t --+ II [(t)llt is a continuous mapping, concluding the verification
of part (c) of Definition 1.

Now let gE IltET C(St , Y). Suppose for each E > 0 and t E T there is an
open neighborhood Vi:" of t and an fin C(T, Y) satisfying

II get) - [(t)llt < Ef3, (2.16)

Since {VtJIET is an open cover of T, there is a finite subcover Vt , VI, ... , VI
....... ... 1 2 n

and elements f 1 , £2"'" f n that satisfy (2.16). Let {ei};~l be a partition of
unity such that e, vanishes outside of V t _. For each s E S, let f(s) =
L:~=1 e;(Q(s» fi(S). Clearly f E C(S, Y) and [' L~~l e;f,-. Note that if t E T,
then by (2.16)

Define g(s) = g(Q(s»(s) and let s be a fixed element in S. Choose an open
neighborhood V of s so that II res) - f(s)iiy < Ef3, S E U. Then for s E U,

\1 g(s) - g(s)lly = Ii g(Q(s»(s) - g(Q(s»(s)l!y

~ II g(Q(s» - [(Q(s»)iQ(s)

+ II f(s) - f(S}iiy

+ [i f(Q(s) - g(Q(S»)iI:Q(S)

< E/3 + E/3 --i-- E/3 = E.

Therefore g E C(S, Y) and consequently gEO. Thus part (d) of Definition ~

is verified, and (2.12) is a continuous field of Banach spaces.
Since it is clear that f -- f is an isometric isomorphism of C(S, Y) onto A""

when Q is an open map, to complete the proof we need to show that if (2.12)
is a continuous field of Banach spaces, then Q is an open map.

Let U be an open subset of S and suppose t is a limit point of T\Q(U).
It follows that there is a net {tn} in T\Q(U) that converges to t. Note that
Q-1(tn) = Stn does not meet U. Suppose 1 E Q(U). Choose s in U so that
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Q(s) = T. Next choose a continuous function f E C(S, Y) so that f(s) ¥= °
and f vanishes outside of U. Then part (c) of Definition 1 implies

°¥= II f(t)llt = lim II £(t,,)lIt" = lim sup II f(s)lly = 0,
n n SES 'n

a contradiction. Thus t E T\Q(U) and consequently Q is an open map. I

EXAMPLE 3. Let S be 'a compact subset of R2 , P a projection of R2 onto
the x-axis, Q a projection of R2 onto the y-axis, and H a separable Hilbert
space. Assume S is such that Q: S -+ R is an open map. Set T = Q(S), and
let ((C(St , H»tET , 8) be the continuous field of Banach spaces defined as in
Theorem 3. Denote by Ao: the Banach space defined by this continuous field
of Banach spaces. Let f be a fixed element of Ay; and suppose that gl ,
g2 ,... , g" are complex valued functions of a real variable defined on peS)
that vanish nowhere on peS). Let e1 , e2 , ••• , e" be orthonormal elements in H.
Now define Vi E A", by the formula Vi(t)(S) = g;(P(s» ei for all s ESt,
i = 1,2,... , n: Then by virtue of [14, p. 387], VI' V2 , ... , V n form a C(T)­
module Chebyshev system for every f E A", .

Remark. Recall that Ax: is isometrically isomorphic to C(S, H) and
note that in general Aoo is non-trivial (see [5, 10.1.4, p. 188] for the definition
of a trivial continuous field of Banach spaces). The space A oo may at first
appear to be a complicated copy of C(S, H); however, for problems dealing
with approximation the base space T is a critical factor (e.g., the abundance
of useful theory of approximation in R versus the scarcity of useful theory
in R2).

EXAMPLE 4. Let S be a compact subset of R2 that satisfies Property 2.4
of [13]. Let P and Q be the projections of R2 onto the x and y axis, respec­
tively, let Y be a complex Banach space, and let gl' g2 ,... , gn be elements in
C(P(S), Y). Set T = Q(S). Assume that for each t E T, span(gl I P(Q-l(t», ... ,
gIl I P(Q-l(t») is an n-dimensional Chebyshev subspace of C(P(Q-l(t», Y).
Now Lemma 2.10 of [13], extended to complex valued functions, implies
(as in the proof of Theorem 3) that Q is an open map. Thus Theorem 3
implies that .

(2.17)

is a continuous field of Banach spaces. Let Aoo denote the Banach space
defined by (2.17). Define Vi by

V;(t) = (gi 0 P) I Q-I(t), i = 1,2,... , n,
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for each t E T. Then VI' Vz ,... , vn is a CCT)-module Chebyshev system for ail
f E Ace . Given f E A", the approximation problem (2.6) becomes

II f(t) - ±ai(t) viet) ii' = s~p II f(t)(s) - f a;(t) v;(t)(s) II
I; i~1 ,t SEQ 1(1) ,I i~l Y

sup . I'l' f(x, t) - I Gi(t) g,(x) i! , (2.18)
XEP(Q-1(tI) i~l'Y

where f E CCS, V). Recall that Theorem 1 implies G,. E C(T), i = 1, ... , n.

EXAivlPLE 5. Let S be a compact subset of Rz tha~ satisfies Property 2.5
of [13]. Let P and Q be the projections of Rz onto the x and y axis, respec­
tively, and set T = Q(S). Assume gl , gz ,... , g" are elements in C(P(S)) such
that span< gl I P(Q-l(t», ... , gn I P(Q-l(t») is an n-dimensional Chebyshev
subspace of CCP(Q-l(t») for each t E T. For each t E T, let /\ denote the
counting measure on Q-l(t) if this set is finite or let AI denote Lebesgue
measure if Q-l(t) is infinite. Assume A-tCQ-l(t») > 0 for aU [E 1. Let 1 <
P < if.) and let A be the subset of DIET U(Q-l(t), At) defined by i1 =-=
{f:jE CCS)}, where f(t) = jl Q-l(t). Clearly A satisfies properties Ca) and (b)
of Definition 1 (T replaced by A). Lemma 2.10 of [13], extended to complex
valued functions, implies that A satisfies property (c) of Definition 1. Now
let r be the unique subset of DIET LP(Q-l(t), I\t) that contains A given by
[5, 10.2.3, p. 192]. Then

(2.19)

is a continuous field of Banach spaces. Let Bex; be the Banach space defined
by (2.19). Next define vi(t)(s) = g;(P(s» for each t E T and s E Q~l(t),

i = 1,2,... , n. If 1 < p < 00, then for any f E Rex; , VI'"'' v" form a C(T).
module Chebyshev system for f.

For p = 1 we assqme for each t E T that P(Q-:(t») is an interval, and that
fEB", is such thatf(t) = f I Q-l(t) is real valued for each t E T. Ifgl, gz , .. , g"
above are real valued functions, then VI' 1'2 , ... , v" forms a C(n-ffiodule
Chebyshev system for f. We note the possibility cf non-unique best approxi­
mations in the discrete V setting necessitates the requirement that P(Q-I(t)
be an interval.

Remark. Examples 4 and 5 provide the identifications necessary to view
product approximation (as examined by Weinstein in R2 (131) in a Banach
space generated by a continuous field of Banach spaces.

We conclude the present section with a density theorem.
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THEOREM 4. Let Z E Zoo and suppose VI' v2 , •.. , is a sequence in Zoo such
that for each positive integer 11, the elements VI, ••. , Vn form a C(T)-module
Chebyshev system for z. Moreover, assume for each t E T that span(vI(t),
v2(t), ... ) is dense in Z(t). Also assume for each positive integer n that qn is the
unique element in !F~ (z) described in Theorem 2, where Vn = spanc(T)(vi ,

V2 , ... , vn )· Then limn~~ 1/1 z - qn 1/100 = o.
Proof Let E > 0 be given. For each t E T there is a positive integer nt

such that II z(t) - qn (I)/It < E. Now let,

Ut = {s E T: II z(s) - qn,(s)lls < E}.

Clearly {UthET is an open cover of T. Therefore compactness of T implies
there is a finite subcover Ut , Ut ,... , Ut of T. If N = max{nt , nt , ... , llt },

12k 12k

then III z - qN 11100 < E. I

3. PRODUCT APPROXIMATION IN A BANACH SPACE

DEFINED BY A CONTINUOUS FIELD OF BANACH SPACES

Let T be a compact Hausdorff space, ((Z(t»tET' F) a continuous field of
Banach spaces, and Zp, 1 ~ p ~ co the associated normed linear space
defined below (2.2). The next result is a variant of a theorem due to Weinstein
[12, Theorem 2.2] and was first observed in the setting of Example 4 (for real
functions and S a rectangle) by Henry and Schmidt [8, Lemma IJ.

THEOREM 5. Let z be afixed element in Zoo , and suppose VI' V2 , ... , Vn are
elements in Zoo that form a C(T)-module Chebyshev system for z. Let aI,
a2 ,... , an be the unique elements in C(T) that generate the singleton 2.;=1 aivi
in £V(z), where V = spanC(T)(vI , V2 , ••• , vn>. Set

pet) = II z(t) - .I ai(t) viet) II '
.~1 i

and suppose bi E C(T), i = 1,2,... , n. Thenfor each E > 0 there exists a I} > 0
such that

II z(t) - .I Mt) Vi(t) II < pet) + a
.~1 t

for all t E T implies that

n

L I alt) - Mt)1 < E
i~l

for all t E T.
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Proof Suppose the conclusion is false. Then there exists an € > 0 such
that for each positive integer m there is an element I;~l bm.iv; in Vand an
element t", E T such that

n I
II z(t) - L: bm ;(t) viet) II < p(t) + -
I. i~I' It' In

(3.1)

for all t E T and such that I;~11 a;(t.",) - b""iUm)1 ?: E. Since T is compact,
we may assume without loss of generality that {tm};';;~1 converges to some
t E T. The Lemma and (3.1) imply that {II bm,i Iloc}~=l is a bounded set. Thus
we may assume without loss of generality that b""i(tm) ---4- 01.; , (Xi a complex
scalar, i = 1,2,... , n. Therefore, since G(t, cx) and pet) are continuous (see
the proof of Theorem 1) we have from (3.1) that

(3,2)

Moreover,

n n

L I ali) - CXi \ = ~~ I I a;(tm) - bm,i(tm)! ?: E. (3.3)
i=l i=l

But (3.2) implies that OI.i = a;(t), i = 1,2,... , n, contradicting (3.3). I

COROLLARY. Let VI' V2 , ... , Vn be elements in ZC£J that form a C(T)-module
Chebyshev system for each Z E Z" . GiL'en Z E ZeD , let Yf(z) denote the singleton
contained in 'pV

1(z), where V = spanC(T)<v1 , v2 , ... , vn), Then the map
Yf: Zoo -+ <V, iii' liloo> is continuous.

Proof Let z E Zoo and let Yf(z) = L:~l aivi' Let E > O. Theorem 5
guarantees that there exists a 8 > 0 such that if

II z(t) - i~ bit) ViCt) lit < pet) + 8

for all t E T, hi E C(T), i = 1, 2, ..., /1, then

n In

~ 1a;(t) - blt)\ < EI.L Iii Vi \~Ioo
,~1 ,~1

(3.4)

(3.5)
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for all t E T. Now let q be any element in Z", satisfying /II z - q III", < 8/2. Let
bi E C(T), i = 1,2'00" n be such that ~(q) = 22~1 biVi . Note that

~ 'I z(t) - q(t)!it + II q(t) - tl alt) viet) lit

::s:; 211 z(t) - q(t)ilt + peo

< 8 + pet)

for all t E T. Thus (3.4) implies (3.5) holds for all t E T. Now

Ii! ~(z) - ~(q)I!I:c = sup II f (alt) - Mt» viet) II
tET i~1 t

n

::s:; sup I I at(t) - bt(t)1 III Vi ill", .
tET ;""1

This inequality and (3.5) imply Iii ~(z) - ~(q)III", < E. I

Throughout the remainder of this section Twill denote any compact subset
of the real line. Let span<fl,f2 ,... ,fm> C C(T) be an m-dimensional
Chebyshey,subspace. Assume that VI' V2 '00" Vn are elements in Z", that form
a C(T)-module Chebyshev system for each z E ZOCj . As in the Corollary,

n

~(z) = I aivi ,
;=1

(3.6)

ai E C(T), i = 1,2,... , n. Then h, where h(i) = ai' i = 1,2,... , n, is an element
Qf the Banac~ space A", de,fined in Example 1. If 22:1 c;(i) f;(i) is constructed
as in Example 1, then define %(z) in V = spanc(T)<v1 ,V2 '00" vn>by the
formula

n m

%(z) = L: L: C;{i)jjVi'
i~1 1=1

(3.7)

Then (3.7) is the best product approximation. to z from V.
We note that the Corollary to Theorem 5 implies that the mapping

:F: Z", ~ (V, Iii . 11100) is continuous.
The product approximation (3.7) is the L'" product approximation

considered by Weinstein [13, p. 183] if ZOCj is constructed as in Example 4
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(denoted A", in that example) with Y being the complex numbers and if
{gl ,... , gTJ and! of Example 4 are assumed to be real valued.

The LP product approximations, 1 ~ p < 00, of [13] are encompassed in
(3.7) if Z", is constructed as in Example 5 and if in Example 1 the ['" norm is
replaced by the corresponding LP norm.

We also note that the product approximation continuity theorem irr
[8, p. 28] is a special case of the continuity of %.

The admissible domains in [13] are based on the somewhat technical
Properties 2.4 and 2.5 and on Lemma 2.10 of [13]. In the more general setting
of this paper any domain emitting the construction of a continuous field of
Banach spaces is admissible. Admissible domains in Theorem 3 and
Example 4 are determined by requiring that an appropriate projection
mapping be open. For Example 4, Property 2.4 and Lemma 2.10 of [13] imply
the openness of the projection mapping. For Example 5 of this paper,
Property 2.5 and Lemma 2.10 of [13] imply that (2.19) is a continuous field.
of Banach spaces. Thus admissible domains in the sense of [13] are admissible
domains for the more general Examples 4 and 5 of this paper.

4. CONSLUSIONs

In this paper the approximation of elements of a Banach space ZeD defined
by a continuous field of Banach spaces is considered. The approximating
space is the C(T) span of a C(T)-module Chebyshev system. Product approxi..
mation as defined in [12, 13] and subsequently considered in [7, 8] is shown
to be a special case of the approximation concepts of this paper. Product
approximation in a Banach space defined by a continuous field of Banach
spaces incorporates (without additional requirements) product approximation
on more complicated domains as examined in [13].
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