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1. INTRODUCTION

A very elegant, now classical, theory exists for the problem of best
approximation in the space of real valued, continuous functions Cgla, b] by
elements of an #-dimensional Haar subspace [3]. This theory includes the
alternation theorem, the strong unicity theorem, the Freud theorem, and
others. Several effective algorithms for computing best approximations in
Czla, b] are available; for example, the second algorithm of Remes.

Unfortunately, most of this elegant theory does not extend even to the
best approximation problem in Cz(D), where D is a rectangle in R, .

A number of papers have considered settings that do emit best approxi-
mation results paralleling those obtainable in the space Cila, b], sce, for
example [1, 10, 11, 12, 13] and the references of [11].

The focus of the present paper is the multivariate product approximation
scheme introduced by Weinstein [12, 13] and subsequently considered in the
linear case in [7, 8]. For nonlinear product approximation methods, see
[2, 6, 7] and the references contained in [7]. The best product approximation
setting has yielded several theorems in multivariate approximation that are
not possible for classical multivariate best approximations (see [8, 12, 13]
and, in particular, Theorem 4 in [8]). Furthermore, algorithms for computing
best product approximations have proved to be very efficient when compared
to know algorithms for computing classical multivariate best approximations
in Cg(D), [6, 7, 12].

The papers [2, 6, 7, 8, 12] have considered uniform product approximation
either on rectangles or appropriate discrete sets contained in R, . Weinstein
[13] has considered a type of L*? product approximation, 1 < p < o0, on
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more complicated domains in R,. The admissibility of acceptable domains
is based on ratber technical conditions.

In the present paper the authors view product approximation in a Banach
space defined by a continuous field of Banach spaces; this abstract setting
reveals basic product approximation features on more complicated domains,

Although the emphasis of the present paper is on product approximation
in a Banach space defined by a continuous fieid of Banach spaces, other
examples of the theory developed will be given.

2. APPROXIMATION IN A BANACH SPACE DEFINED BY A CONTINUOUS FiELD
OF BANACH SPACES

This section contains most of the fundamental theorems of this paper.
Necessary definitions and terminology precede these theorems.
Let T be a topological space. The first definition is given in [S].

DermvaTioN 1. A continuous field & of Banach spaces on T is a family
{Z(1))ier of complex Banach spaces, together with a subset I" of the cartesian
product | [;r Z(2), such that

(a) I is a complex linear space of [w.r Z(¢);

(b) forallreT, theset {z(z): ze I'} is dense in Z(2);

(¢) forallzel, the function r — Il z{(¢)}, is continnous {|| ||, is the norm
on Z(1));

{(d) letze[].rZ();if forallte T and all € > 0, there is a ve I such
that | z(s) — v{s)ll; < € for every s in some neighborhood of ¢, thenze I'.

Hereafter the continuous field of Banach spaces & is denoted by & =
(Z@ser , 7).

Now let Z be the set of all ze I' such that || z(r)|l; vanishes at infinity.
Clearly Z is a linear subspace of I". For z € Z, define

12 Il = supill2()]s: 1€ T}, @
The map z — ||| z ||, defines a norm for Z, and the pair
(Z, 1]l + fie) = Zon

is called the Banach space defined by the continucus field of Banach spaces &.
The Banach space Z. will generally provide the setting for subsequent
discussions.

Throughout the remainder of the paper 7 is assumed to be a compact
Hausdorff space, and p is a finite, positive, regular Borel measure defined



78 HENRY AND TAYLOR

on T with support 7. We note when T is a compact Hausdorff space that
I'==%2.
Let 1 < p < + o0, and let z € Z. Corresponding to (2.1), define

izt = ([ 1atoi du) " 22

Then Z, denotes the normed linear space (Z, ||| * |l],).

For additional information about continuous fields of Banach spaces the
interested teader is referred to [5, pp. 186-222].

Now let A be a Banach algebra with norm || - ||, .

DerINITION 2. A Banach space Y is said to be a Banach A-module if Y
is a module (left or right) in the usual algebraic sense and if for all ae A
andyeY, || aylly < kllala|lyly where k is a fixed, positive number.

By virtue of [5, 10.1.9], Z., is a Banach C(T)-module, where C(T') denotes
the complex valued continuous functions defined on 7. The reader is referred
to [9] for additional properties of Banach modules.

DeriniTION 3. A sub-A-module V C Y is said to be free, with generator
GCV,if

(a) span, G = V; and if

() v,.,v,in G and a ,..., a, in A are such that 2:-1:1 a,v; = 0, then
a;=0, i=1,...,n. If in addition to (a) and (b), G is a finite set and V is closed,
then V is said to be a finitely generated free and complete A-module, and
the elements of G are called free generators of V.

DEFINITION 4. Let z € Z. The elements v; , v, ,..., ¥, in Z are said to form
a C(T)-module Chebyshev system for z if for each 7< 7, dim span{vz),
Volt),..., Vo(t)> = n and z(¢f) has a unique best approximation from
spandvy(z),..., v ().

We note from Definition 4 that if for each z € Z, z(¢) has a unique best
approximation from spandvy(t),..., v,(¢}>, then spand{v,(2),..., v,(¢)> would
form a Chebyshev subspace in the usual sense in Z(¢) [11, p. 103].

The following lemma will be utilized in the proof of Theorem 1.

LeMMA. Let z € Z,, and suppose ¥y ,..., v, are elements of Z.. that form a
C(T)-module Chebyshev system for z. Let f- T — R be the function defined by

> o = 1)

i=1 E

f(r) = inf (” A2 ) H o; are complex scalars,
=1 ¢
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and set B = inf{ f(t): t € T}. Then (a) B >0; (b) if ay ,..., a, belong to C(T},
then || 22;1 a;¥; || = (B/n) 22;1 L@l 5 () the space spance)<Vy , Yo ses ¥
is a free and complete sub-C(T)-module of L. with free generators ¥, , Vy,.... ¥, .

Proof. Suppose B == 0. Then there is a net {¢,.,} in 7 such that f(z,}) - 0.
Consequently, for each g€ A there are scalars o, , ciga ..., %, , such that

n

i3 | o, = 1 and such that

[\
Lnd
e

:

D=1

115311 vt | = o. .

Since T is compact and {o, ;},.4 1S @ bounded set we can assume, by dropping
to a subset if necessary, that 7, — ie 7 and o, ; — o, , where Yoyl =1
It follows that

— H Z aVi{fg) i ‘

<|

i o v,(7) ‘L - h i a¥;{t,) ;ff !

1

n | o
+ ; [ oy — g | TVt + :] i; oy, VilZy) {{

f'Z
Now part (c) of Definition 1 and (2.3) imply that
IS awi® ‘[ — 0. (2.4)
i=1 v

But since vy,..,v, form a C(I)-module Chebyshev system for gz,
dim span{vy(i),..., v,(f)> = n; consequently (2.4) implies that «; =g,
{ = 1,..., n. But this contradicts Y;_, | o; | = 1, and hence (a) is established.

Now let e T and let a,, a5 ,..., a, belong to C{T'). Clearly part (a) of the
Lemma implies that

Bla() <

I
!

i
!

. (2.5)

0

i éai(t) vi(t) ”t < i i a.v;

i

Thus B a; . < || Xiy aV, |l , and this inequality implies (b).
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To establish part (c) we need to show that spanc(){v ,..., v, is complete.
Suppose {g;}72; C spanc()<¥y ,..., ¥, is a Cauchy sequence. Now

.

= (B/n) i @y — il

g — 8 lllo = J 2. (@ — au) v;

by part (b) of the Lemma. Thus {a,;};, is Cauchy in C(7’). Part (c) now follows
from the completeness of C(7) and Z,. [i

TheorReM 1. Let z € Z,, and suppose that vy , Vs ,..., V,, are elements in Z,
that form a C(T)-module Chebyshev system for z. For each t € T let a(t),..., a,(t)
be the unigue complex numbers satisfying

| 20) — 3 a0y vito)|

i=1 t
= inf{]| (1) — q(1)llz q(?) € spandvy(t),..., Vu(1)>}. (2.6)
Then each a; , i = 1,..., n is an element of C(T).

Proof. Let f(r) and B be defined as in the Lemma. Then (2.5) implies that

3 la()] < @B

3 aovo]|

i

< @B ¥ 4w — 20| + @i,

i=1

< /B[ 2@ -

Thus
” a; ”oo < (zn/ﬁ) Hl z ”lm > i = 1’ 25'--’ h. (2'7)

As usual 4" denotes the Banach space of n-tuples o = (o ,..., &) Of
complex numbers with norm || « || = Z;;l o). Let G: T X £, — R be the
mapping defined by

G(t, o) = H Oy avi(?) | 2.8)

i=1 g
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for each f € T and « € 4,". Let (s, 7) be a fixed point in 7 X 4" Then

| G(t, ) — Gls, D)l < | G(t, o) — G, 7| + | G2, 7) — G5, 7).

Ms

Loy — 7 1 VOl

i=1

[

+ HI () — % nl v z(:)(l - lzm)— 5 l(s)ll t

This inequality and part (¢) of Definition 1 now imply that G is a continuous
map. Next define p: T — R by the formula

o) = | z(r)— a(£) V1) || — G, a(t)),

where a: T — £, is given by a(t) = (4,(¢), ax(t),..., 4,(1)). Observe that

p(t) — p(s) < Gz, a(s)) — G(s, a(s)) (2.9}
and that
p(s) — p(1) < G, alt)) — Gz, a(2)). (2.10)

The continuity of G and (2.7) imply that | G(s, a(t)) — G{¢, a(t))| — O as
t — 5. Consequently (2.9) and (2.10) imply that p is continuous. Now et
€ > 0 and s € T be given. The argument given in {12, Theorem 2.2} implies
that there is a 8§ > 0 such that if 7 = (= ,..., 7,) € 4™ has the property that
G(s, 7) < p(s) + 8, then Y, | 7 — ais)] < e. Choose a neighborhood U
of s such that foreach 7€ U, | p(t) — p(s)| < 8/2and | G(s, a(t)) — G(t, a(t})| <
6/2. 1t follows for ¢ € U that

G(s, a(t)) < | G(s, a(t)) — G(t, a@)| -+ | p(t) — p()i + pls)
< p(s) + 6.
Thus 3; 1 | aft) — a{s)] < e, and consequently ;€ C(T), i = 1, 2,...,n. §

The next theorem establishes a fundamental link between the normed
linear spaces Z,, 1 <{ p <{ oo, and approximation from the span of a C(7)-
module Chebyshev system.

THEOREM 2. Let z be a fixed element of L., , and suppose that vy ,..., v,
are elements in Z, that form a C(T)-module Chebyshev system for x. Let
V = spaneq){Vy ..., Yoy, and let

L2 ={qeViilz—qll, = 39‘5 z—vll} 1<p<oo.
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Then FyXNz) contains exactly one element v, ; moreover, v, € L®(z) for
I<p< .

Proof. Part (c) of the Lemma implies that V is a free and complete sub-
C(T)-module of Z,, with free generators vy ,..., v, . Now let g ,..., a, be the
elements of C(T) defined in (2.6). Let v, = 3., a;v; . Then clearly v, € %"(z),
1 < p < . Next suppose that ¢ = Y., b;v, is in % (z), and assume for
some f € T that q(¥) # v(f). Since || z(f) — v(Dl; < |l (&) — q(D)|l;, there is a
neighborhood U of 7 and a 8 > 0 such that

I 2(2) — Yol + & <[ =) — q@®)ll. 2.11)

for all t e U. It follows that
Iz~ Yo il = [ 11(0) — %(0) duu)

=] 1200 = %@l dute) + [ 120 — (ol dpts).

This equality and (2.11) imply that

lz—vlh < —du(U) + J'U“ z(t) — q(0)l; dp(t)
+ [ 120 — a0l duto

< =)+ llz —qlihy
= ‘_SF'(U) +z—vliy.

Therefore u(U) = 0, which contradicts the fact that the support of pis 7. ||

Before proceeding to the next theorem we give two examples of C(T)-
module Chebyshev systems in Banach spaces defined by continuous fields of
Banach spaces. The first of these examples will be utilized in subsequent
product approximation considerations.

ExampLE 1. Suppose that J is a compact subset of the real numbers and
that span{f; , fa ..., fmp C C(J) is a Chebyshev subspace of dimension m.
Let I = {1, 2,..., n} and set A; = C(J) for each i e I. Define f; € [];_, A; by
() =f,,7=1,2,.,m We now show that f; ,..., f,, form a C(/)-module
Chebyshev system for each h contained in the Banach space A, defined by the
continuous field of Banach spaces ((A;)ier, [1;-1 A:). In terms of previous
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notation we observe that I' = Z = [, A;, T = I, and that A, = Z, .
Also

i (), = sup | b()(p)i = Rl

[l b |l = max (hQ),.

Clearly dim spancf,(i),..., £.()) = dim span{/f; ,..., fiy = 7,1 = L,.., 1 Let
b e A, . Since span{f ..., /> is a Chebyshev subspace in C(J), each h(/) has
a unique best approximation from this span. Thus Definition 4 implies that
f, ... £, is a C(I)-module Chebyshev system for h. Let ¢,(i),..., ¢,,(i) be the
coeflicients determined in (2.6). Then

.

LOED)

j=1

n

> e i) |

Jj=1

o) 60)| = sup | W) —

m

Therefore i)} ) = ¥ ;_; ¢;() fi(¥) is the classical unique best approximation
to h(i}( v) on the set J from spandfi ,..., fruis, § = 1, 2,..., 1.

ExampiE 2. Suppose ((Z(t))ir , I) is a continuous field of Hilbert spaces;
that is, each Z(¢) is a Hilbert space. Assume v, , ¥5 ,..., v, are elements in Z._,
such that for cach 7 € T, {v,(¢),..., v,(¢)} is an orthonormal set in Z(¢). Then
Vi, Y34, ¥, form a C(T)-module Chebyshev sysitem for any fe Z. . The
reader is referred to [4] for non-trivial examples of continuous fields of Hilbert
spaces.

In the next theorem the basic results needed to extend product approxi-
mation to more general domains are established. :

TueoreM 3. Let S be a compact Hausdorff space, Q a continuous mapping
of S onts T, and Y a Banach space. Let 0 be the subser of {17 C(S,.Y),
S, = O~X¢), given by 0 = {f:f& C(S, Y)!, where f is defined by £(1) = £1S..
Then

((C(S¢, Y)ier - 0) (2123

is a continuous field of Banach spaces if and only if Q is an open map. Moreover,
when Q is an open map, the Banach space A defined by (2.12} is isometrically
isomorphic to C(S, Y).

Proof. TFirst assume that @ is an open map. Then the properties of
Definition 1 need to be verified.

It is clear that 6 is a complex linear subspace of [y C(S;, Y), and, by
virtue of [5,10.1.12, p. 190], C(S,,Y) = {£f(z): £ 8} for each tc 7. Thus
properties (a) and (b) of Definition 1 are verified.

610f27]1~7
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Now let fe 8, where fe C(S,Y), and suppose {f,}.cq is a net in 7 that
converges to f. Assume

Tim || £tk > 1| ) 2.13)
(Here || £(2)]; = SUpses, || f(s)lly .) Suppose that {z,} is a subnet satisfying
lim | felle, = Tm || (2, - (2.19

We may assume there is a net {s,,} C S, 5, €S;_, that converges to some s€ S
and that satisfies

I £z, = sup I )y = || f(s)lly -

Clearly lim,, || f{(s )iy = lim,, || f‘(tn)[]tn. Since @ is continuous and @—(z,) =
S; , t, — t implies that Q(s) = . Thus (2.13) and (2.14) imply that

@]l < Tim || £t ), = Lim || fsa)lly
= | f(s)lly = Il £()(s)lly
< sup|| )y = 1 £l ,
which is a contradiction. Therefore
Gm || (2, < [ KOl - (2.15)
Now select § € Q~(t) so that
i f(@)lle = sup IOy = 1 EOGly = | TGy -
Let € > 0 be given. By continuity of f, the set
U= {seS: {8y — ¢ <l H)lly < fB)llxy — €
is an open neighborhood of 3. Since Q is an open map and QG) = 1, it
follows that O(U) is an open neighborhood of 7. Thus there is an 7, from the
directed set A such that ¢, € @(U) for n = n,. Choose s, in UN @g~Y1,).

Note for n = n, that

Il £(t)lls, = sup | f(2)$)ly = HE)sa)lly

= || f(s)llx > [ {®lly — .
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Thus

lim | £z, = 1 @Iy = I| £y = | £Ole -

This inequality and (2.15) now imply that
tim || £e.) s, = 1| £

Therefore 7 — || f(¢)!l; is a continuous mapping, concluding the verification
of part (c) of Definition 1.

Now let 8 € [1ier C(S:, Y). Suppose for each ¢ > 0 and e T there is an
open neighborhood V; of 7 and an fin C(T, Y) satisfying

I 8() — fQ)l: < €3, te V. (2.16)

Since {¥},r Is an open cover of T, there is a finite subcover Vf , V, sy Vit
and elements f;, f, ..., f, that satisfy (2.16). Let {¢;}}, be a partltxan of
umty such that e, vamshes outside of V, . For each ses, let f(s) =
S e0(s) £, {s). Clearly fe C(S,Y) and f = i, ef:. Note thatif re T,
then by (2.16)

120 — 0l = | ¥ en@n — )| < <3

i=1

Define g(s) = g(0O(s))(s) and let 5§ be a fixed element in S. Choose an open
neighborhood U of § so that || {(s) — f(8)/iy < €/3, s € U. Then for se U/,

I g(s) — 8By = I 8(Q())s) — EOENG)'x
< 8(Q) — OGN ot
+ [[(s) — f8)ily
+ 11 E(Q(5)) — HO) gy

<< €/3 4 €3 + €/3 =

Therefore g € C(S, Y) and consequently § € 8. Thus part (d) of Definition !
is verified, and (2.12) is a continuous field of Banach spaces.

Since it is ciear that f — fis an isometric isomorphism of C(S, Y) onto A,
when @ is an open map, to complete the proof we need to show that if {2. iz\,’
is a continuous field of Banach spaces, then Q is an open map.

Let U be an open subset of § and suppose ¢ is a limit point of T\O(U}.
It follows that there is a net {¢,} in T\Q(U) that converges to ¢. Note that
Q7Y(t,) = S, does not meet U. Suppose 1€ Q(U). Choose s in U so that
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0O(s) = 1. Next choose a continuous function fe C(S, Y) so that f(s) = 0
and f vanishes outside of U. Then part (c) of Definition 1 implies

0 == |{ f(0)]l; = lim || £(#,)]l5, = lim sup | f(s)ly =0,

a contradiction. Thus ¢ € T\@Q(U) and consequently Q is an open map. [

ExampLE 3. Let § be a compact subset of R, , P a projection of R, onto
the x-axis, @ a projection of R, onto the y-axis, and H a separable Hilbert
space. Assume S is such that 0: § — R is an open map. Set T = O(S), and
let ((C(S;, H))er , 0) be the continuous field of Banach spaces defined as in
Theorem 3. Denote by A, the Banach space defined by this continuous field
of Banach spaces. Let f be a fixed element of A, and suppose that g,
g ..., &5 are complex valued functions of a real variable defined on P(S)
that vanish nowhere on P(S). Let ¢, , ¢, ,..., e, be orthonormal elements in H.
Now define v;e A, by the formula v(¢)(s) = g(P(s)) e; for all se§;,
i=12,..,m Then by virtue of [14, p. 387], v;, ¥s ..., ¥, form a C(T)-
module Chebysheyv system for every fe A, .

Remark. Recall that A, is isometrically isomorphic to C(S, H) and
note that in general A_ is non-trivial (see [5, 10.1.4, p. 188] for the definition
of a trivial continuous field of Banach spaces). The space A, may at first
appear to be a complicated copy of C(S, H); however, for problems dealing
with approximation the base space 7 is a critical factor (e.g., the abundance
of useful theory of approximation in R versus the scarcity of useful theory
in R,).

ExampLE 4. Let S be a compact subset of R, that satisfies Property 2.4
of [13]. Let P and Q be the projections of R, onto the x and y axis, respec-
tively, let Y be a complex Banach space, and let g, , g, ,..., g, be elements in
C(P(S), Y). Set T = Q(S). Assume that for each ¢ € T, span{g, | P(Q(t)),...,
g, | P(O7(1))> is an n-dimensional Chebyshev subspace of C(P(Q~(t)), Y).
Now Lemma 2.10 of [13], extended to complex valued functions, implies
(as in the proof of Theorem 3) that @ is an open map. Thus Theorem 3
implies that '

(CQ~1), Y)er » 0) 2.17)

is a continuous field of Banach spaces. Let A, denote the Banach space
defined by (2.17). Define ¥; by

‘A,l(t) = (g7 ° -P) [ Q_I(t)a i= 15 29"" n,
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foreachte 7. Then ¥, , 9, ,..., ¥, is a C(T)-module Chebyshev system for ail
fe A, . Given fe A_ the approximation problem (2.6) becomes

[0~ S a0 = sw [ H6) 3 a0

seQ7L(1) i1

n

~  sup ” f(x, 1) — Y at) gdx) ‘g (2.18)

zeP(OT(t) i=1

where fe C(S, Y). Recall that Theorem 1 implies a, € C(T}, { = 1,..., 7.

Exampie 5. Let S be a compact subset of R, that satisfies Property 2.5
of [13]. Let P and Q be the projections of R, onto the x and y axis, respec-
tively, and set 7 = @(S). Assume g, , 85 ,..., &, are elements in C(P(S)) such
that span{ g, | P(Q7(1)),.... g | P(Q7Xt))> is an n-dimensional Chebyshev
subspace of C(P(Q-Y1))) for each fe T. For each te T, let A, denote the
counting measure on Q~Y¢) if this set is finite or let A, denote Lebesgue
measure if Q-Y¢) is infinite. Assume A(Q~*¢)} > 0 for all re7. Let 1 <
p < oo and let A4 be the subset of [lir L2(07Y¢), A,) defined by A4 =
{f: fe C(S)}, where £(z) = f| QX¢). Clearly 4 satisfies properties (a) and (b}
of Definition 1 (I" replaced by A). Lemma 2.10 of {13], extended to complex
valued functions, implies that /1 satisfies property (¢) of Definition 1. Wow
et I" be the unique subset of [],..r LA@X¢), A,) that contains /A given by
[5, 10.2.3, p. 192]. Then

((LI](Q_l(I)a }‘t))teT H P:’ 1'\2 ‘19}

is a continuous field of Banach spaces. Let B, be the Banach space defined
by (2.19). Next define v(t)(s) = g(P(s)) for each tc7 and se 0 i},
i=1412,..,n If 1 <p < o, then for any £ B, , v,,..,v, form a C(7)-
module Chebyshev system for f.

For p = 1 we assume for each ¢ € T that P(@(z)} is an interval, and that
feB,issuchthatf(r) = £ | O(t)isreal valued forcach e 7. If g, g5, ... 2
above are real valued functions, then v, ¥,,..., v, forms a {7 -module
Chebyshev system for £. We note the possibility ¢f non-unique best approxi-
mations in the discrete L! setting necessitates the requirement that PIQ Y1)}
be an interval.

Remork. Examples 4 and 5 provide the identifications necessary to view
product approximation (as examined by Weinstein in R, {13]} in a Banach
space generated by a continuous field of Banach spaces.

We conclude the present section with a density theorem.
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THEOREM 4. Let z € Z,, and suppose Vi , V, ,..., is a sequence in L, such
that for each positive integer n, the elements v, ,..., v, form a C(T)-module
Chebyshev system for z. Moreover, assume for each te T that span{v(t),
Yot),...) is dense in Z(t). Also assume for each positive integer n that q, is the
unique element in °?},R(z) described in Theorem 2, where V, = spancq{v; ,
Vo ooy Voo. Then limy,.o || Z — q, [lle = O.

Proof. Let € > 0 be given. For each ¢ € T there is a positive integer n,
such that || z(¢) — g, ()]; < . Now let
Up = {seT:]2(s) — 4, ()]s < €}

Clearly {U,}sr is an open cover of 7. Therefore compactness of 7T implies
there is a finite subcover U, , Ui, sy U, of T.If N = maxizn, , Ry, s Bi s
then [z — qy llo <e |

3. PRODUCT APPROXIMATION IN A BANACH SPACE
DrerFINED BY A CoONTINUOUS FIELD OF BANACH SPACES

Let T be a compact Hausdorff space, ((Z(#)):r , ") a continuous field of
Banach spaces, and Z,, 1 < p < o the associated normed linear space
defined below (2.2). The next result is a variant of a theorem due to Weinstein
[12, Theorem 2.2] and was first observed in the setting of Example 4 (for real
functions and S a rectangle) by Henry and Schmidt [8, Lemma 1].

THEOREM 5. Let z be a fixed element in Z,, , and suppose v, , v, ,..., Vy, are
elements in Z.,, that form a C(T)-module Chebyshev system for z. Let ay,

s ..., 4, be the unique elements in C(T) that generate the singleton Y ;. ; av;
in LyM(z), where V = spanc){Vy , Va yees V0o S€1

o) = |20 = T a )]

and suppose b; € C(T), i = 1, 2,..., n. Then for each € > 0 there existsad > 0
such that

H40~§@@W@%<M0+3
Jor all t € T implies that
> ladn) — b0l < ¢

forallteT.
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Proof. Suppose the conclusion is false. Then there exists an ¢ > 0 such
that for each positive integer m there is an element 2111 b,¥;in Vand an
element ¢,, € T such that

|70 = 3 by v < o)+ G0

for all 1 e T and such that 3;_, | aft,,.) — b i{tn)l = e Since T is compact,
we may assume without loss of generality that {z,};._; converges to some
te T. The Lemma and (3.1) imply that {|| b, ; |l«}m; 1S & bounded set. Thus
we may assume without loss of generality that b, {f,.) — «;, ®; & complex
scalar, i = 1, 2,..., n. Therefore, since G(f, o) and p(z) are continuous (see
the proof of Theorem 1) we have from (3.1) that

n

|20 = Y | <o, (3.2)
i=1 i
Moreover,
Y o) — ol = lm Y | aftu) ~ builtn) > <. (3.3)
i=1 =1

But (3.2) implies that o; = ay(f), i = 1, 2,...,, n, contradicting (3.3). §

COROLLARY. Let vy, V,,..., vV, be elements in L., that form a C(Ty-module
Chebyshev system for eachz c L, . Given z.€ Z_, , let #(z) denote the singleton
contained in LyW(z), where V = spanc{Vy, Va,..., V0. Then the map
R Ly — NV, || * il is continuous.

Proof. Let ze€Z, and let #(z) =Y, ,av;. Let ¢ > 0. Theorem 3
guarantees that there exists a 8 > 0 such that if

[ — . boyvito)| < p) + 3 (3.9

forallte T, b, e C(T),i =1, 2,..., n, then

> ladt) — bl < ¢/ v i 6.5
i=1 i=1
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for all t € T. Now let g be any element in Z,, satisfying || z — q [[l. < §/2. Let
b,e C(T), i = 1,2,..., n be such that %(q) = X;-, b,v; . Note that

|20~ 3 6w <1200 — ai+ |a) — 3 80|

< N z(8) — q@)ll + II q() — i

i=1

a)v0)|,

< 2 2(1) — q®il; + p(1)
<8+ p(t)

for all £ € 7. Thus (3.4) implies (3.5) holds for all e 7. Now

[l #(z) — 2@l = sup

3 @0 — by wo|

< sup Z Lad(t) — b Vi [l -

tel 4.1

This inequality and (3.5) imply ||| Z(z) — Z2(@)]le < e |}

Throughout the remainder of this section T will denote any compact subset
of the real line. Let span{fi.fs,...fm> € C(T) be an m-dimensional
Chebyshev.subspace. Assume that v, , v, ,..., ¥, are elements in Z,, that form
a C(T')-module Chebyshev system for each z € Z,, . As in the Corollary,

R(z) = i ayv;, (3.6)
i=1

a;e C(T),i = 1,2,...,n. Then h, where h(}) = a;,i = 1, 2,..., n, is an element
of the Banach space A, defined in Example 1. If Y;-, ¢,(i) f;(i) is constructed
as in Example 1, then define #(z) in V = spanc<¥y . Vz ;... V> Dy the
formula

n m

F@) =Y Y ci)fivi. 3.7

=1 ;=1

Then (3.7) is the best product approximation to z from V.

We note that the Corollary to Theorem 5 implies that the mapping
F: L, — (V, |l - lllo) is continuous.

The product approximation (3.7) is the L* product approximation
considered by Weinstein [13, p. 183] if Z,, is constructed as in Example 4
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{denoted A, in that example) with Y being the complex numbers and
{gy,..., s and f of Example 4 are assumed to be real valued.

The L? product approximations, 1 < p < oo, of [13] are encompassed in
(3.7)if Z, is constructed as in Example 5 and if in Example 1 the L= norm is
replaced by the corresponding L? norm.

We also note that the product approximation continuity thecrem in
I8, p. 28] is a special case of the continuity of &#.

The admissible domains in [13] are based on the somewhat technical
Properties 2.4 and 2.5 and on Lemma 2.10 of [13]. In the more general setting
of this paper any domain emitting the construction of a continuous field of
Banach spaces is admissible. Admissible domains in Theorem 3 and
Example 4 are determined by requiring that an appropriate projection
mapping be open. For Example 4, Property 2.4 and Lemma 2.10 of [13] imply
the openness of the projection mapping. For Example 5 of this paper,
Property 2.5 and Lemma 2.10 of [13] imply that (2.19) is a continucus feld
of Banach spaces. Thus admissible domains in the sense of [13] are admissible
domains for the more general Examples 4 and 5 of this paper.

4. CONSLUSIONS

In this paper the approximation of elements of a Banach space Z., defined
by a continuous field of Banach spaces is considered. The approximating
space is the C(7") span of a C(7})-module Chebyshev system. Product approxi-
mation as defined in [12, 13] and subsequently considered in [7, 8] is shown
to be a special case of the approximation concepts of this paper. Product
approximation in a Banach space defined by a continuous field of Banach
spaces incorporates (without additional requirements) product approximation
on more complicated domains as examined in [13].
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